
Extension of Murakami’s High Order Nonlinear Solver

to Multiple Roots

B. Neta

Naval Postgraduate School

Department of Applied Mathematics

Monterey, CA 93943

September 5, 2007

1



Abstract

Several one-parameter families of fourth order methods for finding multiple zeros of

nonlinear functions are developed. The methods are based on Murakami’s fifth order

method (for simple roots) and they require one evaluation of the function and three

evaluations of the derivative. The informational efficiency of the methods is the same as

previously developed methods of lower order. All these methods require the knowledge

of the multiplicity.

1 Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems,
see for example Ostrowski [1], Traub [2], Neta [3] and references there. Recently several
papers by Sharma [4], Sharma and Goyal [5], Homeier [6] and Grau and Diaz Barrero [7]
discuss methods for finding simple roots. Here we develop a high order fixed point type
method to approximate a multiple root. There are several methods for computing a zero
ξ of multiplicity m of a nonlinear equation f(x) = 0, see Neta [3] and Neta and Johnson
[8]. Newton’s method is only of first order unless it is modified to gain the second order of
convergence, see Rall [9] or Schröder [10] . This modification requires a knowledge of the

multiplicity. Traub [2] has suggested to use any method for f (m)(x) or g(x) =
f(x)

f ′(x)
. Any

such method will require higher derivatives than the corresponding one for simple zeros. Also
the first one of those methods require the knowledge of the multiplicity m. In such a case,
there are several other methods developed by Hansen and Patrick [11], Victory and Neta
[12], Dong [13], and Neta and Johnson [8]. Since in general one doesn’t know the multiplicity,
Traub [2] suggested a way to approximate it during the iteration.

For example, the quadratically convergent modified Newton’s method is

xn+1 = xn −m
fn

f ′
n

(1)

and the cubically convergent Halley’s method [14] is

xn+1 = xn − fn

m+ 1

2m
f ′

n − fnf
′′
n

2f ′
n

(2)

where f (i)
n is short for f (i)(xn). Another third order method was developed by Victory and

Neta [12] and based on King’s fifth order method (for simple roots) [15]

wn = xn − fn

f ′
n

xn+1 = wn − f(wn)

f ′
n

fn + Af(wn)

fn +Bf(wn)

(3)

2



where
A = µ2m − µm+1

B = −µ
m(m− 2)(m− 1) + 1

(m− 1)2

(4)

and
µ =

m

m− 1
(5)

Yet two other third order methods developed by Dong [13], both require the same information
and both based on a family of fourth order methods (for simple roots) due to Jarratt [16]:

xn+1 = xn − un − fn(
m

m− 1

)m+1

f ′(xn − un) +
m−m2 − 1

(m− 1)2 f ′
n

(6)

xn+1 = xn − m

m+ 1
un −

m

m+ 1
fn(

1 +
1

m

)m

f ′
(
xn − m

m+ 1
un

)
− f ′

n

(7)

where

un =
fn

f ′
n

. (8)

Neta and Johnson [8] have developed a fourth order method based on Jarrat’s method
([17]). The method in general is given by

xn+1 = xn − fn

a1f ′
n + a2f ′(yn) + a3f ′(ηn)

(9)

where un is given by (8) and

yn = xn − aun

vn =
fn

f ′(yn)

ηn = xn − bun − cvn

(10)

where the parameters a, b, c, a1, a2, a3 depend on the multiplicity m.

Our starting point here is Murakami’s 2-parameter family of methods [18] given by the
iteration

xn+1 = xn − a1un − a2w2(xn) − a3w3(xn) − ψ(xn) (11)

3



where un is given by (8) and

w2(xn) =
fn

f ′(yn)
, yn = xn − aun

w3(xn) =
fn

f ′(zn)
, zn = xn − bun − cw2(xn)

ψ(xn) =
fn

b1f ′
n + b2f ′(yn)

(12)

Murakami has shown that this family of methods (for simple roots) is of order 5 ([18])
if the parameters are chosen appropriately. The method requires one function- and three
derivative-evaluation per step. Thus the informational efficiency (see [2]) is 1.25.

2 New Higher Order Scheme

We would like to find the eight parameters a, b, c, a1, a2, a3, b1, b2 so as to maximize the order
of covergence to a root ξ of multiplicity m. Let en, ên, εn be the errors at the nth step, i.e.

en = xn − ξ
ên = yn − ξ
εn = zn − ξ

(13)

If we expand f(xn), and f ′(xn) in Taylor series (truncated after the N th power, N > m) we
have

f(xn) = f(xn − ξ + ξ) = f(ξ + en) =
f (m)(ξ)

m!

⎛
⎝em

n +
N∑

i=m+1

Aie
i
n

⎞
⎠ (14)

or

f(xn) =
f (m)(ξ)

m!
em

n

⎛
⎝1 +

N∑
i=m+1

Bi−me
i−m
n

⎞
⎠ (15)

where

Ai =
m!f (i)(ξ)

i!f (m)(ξ)
, i > m

Bi−m = Ai

(16)

f ′(xn) =
f (m)(ξ)

(m− 1)!
em−1

n

⎛
⎝1 +

N∑
i=m+1

i

m
Bi−me

i−m
n

⎞
⎠ (17)

To expand f ′(yn) and f ′(zn) we use some symbolic manipulator, such as Maple [19], we find

f ′(yn) =
f (m)(ξ)

(m− 1)!
êm−1

n

(
1 +

m+ 1

m
B1ên +

m+ 2

m
B2ê

2
n + . . .

)
(18)

4



ên = en − aun = µen +
a

m2
B1e

2
n +

[
2a

m2
B2 − a(m+ 1)

m3
B2

1

]
e3n + . . . (19)

where

µ =
m− a

m
(20)

Thus

f ′(yn) =
f (m)(ξ)

(m− 1)!
em−1

n

(
c0 + c1en + c2e

2
n + c3e

3
n + . . .

)
(21)

where

c0 = µm−1

c1 = µm−2 (m− a)2(m+ 1) + am(m− 1)

m3
B1

c2 =
µm−3

m5

[
am

(
(m− a)2 +m(a + 1)2

)
− 1

2
a2m2(m+ 7)

]
B2

1

+
µm−3

m5

[
(m+ 2)(m− a)4 + 2a(m− a)m2(m− 1)

]
B2

c3 = µm (m+ 3)(m− a)2

m3
B3 − aµm−3

m6

[(
m2 + 3m+ 2

)
(a−m)3

−2m2(m+ 1)(a−m)2 − 2m2a(m− 1)(m− 2)
]
B1B2

+
µm−4

6m6
a
[
3(2m2 + 4m+ 1)(a−m)3 + 2(m+ 3)(a−m)2

+a2m2(3a+m− 18) + am2(−3m2 + 12m+ 16) −m2(5m+ 6)]B3
1

(22)

The error in zn is given by

εn = en − bun − cw2(xn) =

(
1 − b

m
− c

m
µ1−m

)
en

+

(
b

m2
+

c

m2
µ−m

[
µ2 − a(1 − a)

m

])
B1e

2
n

+

[
2b

m2
−
(
α1

m6
cµ−m−1

)
B2 −

(
α2

2m7
cµ−m−1 +

b(m+ 1)

m3

)
B2

1

]
e3n + . . .

(23)

where

α1 = −a4(m+ 2) + 4a3m(m+ 2) − a2m2(3m+ 14) + 2m3(5a−m)
α2 = 2a4m(m+ 2) − 4a3m2(m+ 4) − 12a3m+ (3m+ 19)m3a2 + 22a2m2

−2am3(5m+ 7) + 2a4 + 2m5 + 2m4

5



Now expand f ′(zn) in terms of en

f ′(zn) =
f (m)(ξ)

(m− 1)!
εm−1
n

(
1 +

m+ 1

m
B1εn +

m+ 2

m
B2ε

2
n + . . .

)

=
f (m)(ξ)

(m− 1)!
em−1

n

(
d0 + d1en + d2e

2
n + d3e

3
n + . . .

) (24)

where
d0 = λm−1

d1 = λm−2 β0 + β1cµ
−m + β2c

2µ−2m + β3bcµ
−m

m5
B1

d2 =
λm−3

2m10µ3m+1

[
−
(
D0

1 +D1
1µ

m +D2
1µ

2m +D3
1µ

3m
)
B2

1

+
(
D−1

2 µ−m +D0
2 +D1

2µ
m +D2

2µ
2m +D3

2µ
3m
)
B2

]

(25)

and

λ =
m(m− b) − c(m− a)µ−m

m2

β0 = (m2b(b−m) +m4µ2m) (m+ 1)
β1 = m (a2(m2 − 1) +ma(5 −m) −m2(m+ 3))
β2 = (m− a)2(m+ 1)
β3 = 2m(m+ 1)(m− a).

(26)

The Dj
i are complicated expressions and will be given in the appendix. Now substitute (15),

(17), (21), and (24) into (8), (12) and expand the quotients in Taylor series, then substitute
all these into (11), we get

en+1 = C1
1en + C1

2B1e
2
n +

(
C1

3B
2
1 + C2

3B2

)
e3n +

(
C1

4B
3
1 + C2

4B1B2 + C3
4B3

)
e4n + . . . (27)

where the coefficients Cj
i depend on the parameters a, b, c, b1, b2, a1, a2, and a3. Because of

the complexity, we have taken a = m/2, b2 = 1 − 2m−1b1 and either b = 0 or c = 0. Thus
we reduced the number of parameters to five and as a consequebnce we were unable to get
fifth order methods. The results for m = 2, m = 3 and m = 4 are given in Table 1.

To summarize, we managed to obtain a family of fourth order methods requiring one
function- and three derivative-evaluation per step. The informational efficiency, E = p/d, of
these methods is 1, as all the above mentioned methods for multiple roots. The efficiency
index, I = p1/d, is 1.4142 which is lower than the index for those third order methods. For
m = 2, we found that a3 = 0 and thus we need one less derivative. This happened also for
the methods developed by Neta and Johnson [8]. In this case the informational efficiency is
4/3 and the efficiency index is 1.5874. These results are given in Table 2. Clearly if the cost

6



m 2 2 3 3 4 4

a 1 1
3

2

3

2
2 2

b 0 free 0 0.9415780151 0 11.9151259843

c free 0 0.2353945038 0 1.9640446368 0

b1 1 1 free free 0.05 .0625

b2 -1 -1 1 − 4b1 1 − 4b1 0.0268934369 .5

a1 -6 -6 −2.5128989321− 16b1 −10.571320917− 16b1 -7.49156894 5.6116821612

a2 3 3 −1.8238807632 + 4b1 0.1907247330 + 4b1 -0.91067191 -1.2089575039

a3 0 0 4.1469082443 4.1469082443 -0.92646960 -0.4647127230

C1
4

15

32

15

32
-6.1027059066 -6.1836740792 -1.35078537 -1.0152077055

C2
4 -

1

2
-
1

2
9.4693139272 9.5300400567 2.141639816 1.5300422793

C3
4

1

8

1

8
-3.4826758270 -3.4826758270 -0.822966734 -0.5494657588

Table 1: The parameters for various values of m

7



method f f ′ f ′′ p d E = p/d I = p1/d

Schröder 1 1 0 2 2 1 1.4142

Hansen&Patrick 1 1 1 3 3 1 1.442

Halley 1 1 1 3 3 1 1.442

V ictory&Neta 2 1 0 3 3 1 1.442

Dong 1 2 0 3 3 1 1.442

Neta&Johnson 1 3 0 4 4 1 1.4142

Neta&Johnson, m = 2 1 2 0 4 3 1.3333 1.5874

Neta 1 3 0 4 4 1 1.4142

Neta, m = 2 1 2 0 4 3 1.3333 1.45874

Table 2: Comparison of Methods for Multiple Roots

8



of evaluating the drivatives is different than that of evaluating the function, one can make
an argument to using the appropriate method for the case at hand.

3 Numerical Experiments

In all our numerical experiments, we have used the appropriate method with b = 0, except for
example 3 when we used both schemes. In our first example we took a quadratic polynomial
having a double roots at ξ = 1

f(x) = x2 − 2x+ 1 (28)

Here we started with x0 = 0 and the root was found in 1 iteration. The modified Newton
method (1)converged as fast and Newton’s method required 10 iterations to get as close as
10−7. In the second example we took a polynomial having two double roots at ξ = ±1

f(x) = x4 − 2x2 + 1 (29)

Starting at x0 = 0.8 or x0 = 0.6 our method converged in 2 iterations. The results are given
in Table 3.

n x f x f

0 0.8 0.1296 0.6 0.4096

1 1.00100728 0.4062524998(-5) 1.03262653 0.004398017

2 1.00000000 0 1.00000036 0.5060180(-12)

Table 3: Results for Example 2

Similar results were obtained when starting at x0 = −0.8 to converge to ξ = −1. For
comparison, we have tried the modified Newton. Using x0 = 0.6 we required 4 iterations to
achieve 10−9 accuracy.

The next example is a polynomial with triple root at ξ = 1

f(x) = x5 − 8x4 + 24x3 − 34x2 + 23x− 6 (30)

The iteration starts with x0 = 0 and the results are summarized in Table 4. The first 3
columns using the scheme with b = 0 and the last three columns using c = 0.

Another example with double root at ξ = 0 is

f(x) = x2ex (31)

Starting at x0 = 0.1 or even x = 0.2 our method converged in 2 iterations. The results are
given in Table 5.

The next example having a double root at ξ = 1 is

f(x) = 3x4 + 8x3 − 6x2 − 24x+ 19 (32)

Now we started with x0 = 0.5 and the results are summarized is Table 6.

9



n x f n x f

0 0 -6. 0 0 -6.

1 0.989582711 -0.22964188(-5) 1 0.985370624 -0.64000004(-5)

2 0.999999994 1(-18) 2 0.999999974 0

Table 4: Results for Example 3. The first 3 columns using the scheme with b = 0 and the

last 3 using c = 0

n x f x f

0 0.1 0.11051709(-1) 0.2 0.4885611033(-1)

1 0.2069496569(-4) 0.428290468(-9) 0.286951344(-3) 0.8236470507(-7)

2 0.43944 (-19) 0.193107514(-38) 0.162369865(-14) 0.2636397306(-29)

Table 5: Results for Example 4

n x f

0 0.5 6.6875

1 1.00806166565 0.235014761(-2)

2 1.00000000024 0.2 (-17)

Table 6: Results for Example 5

10



The last example having a root at ξ = 1 with multiplicity m = 4 and a simple root at
ξ = −1, i.e.

f(x) = x5 − 3x4 + 2x3 + 2x2 − 3x+ 1 (33)

Now we started with x0 = 0.01 and the results are summarized is Table 7. This is the only
case we needed more than 2 iterations to converge.

n x f

0 0.01 0.9702019701

1 0.090514708167 0.905147081668(-1)

2 0.562284899208 0.573490665693(-1)

3 0.993019776872 0.47313908958(-8)

4 0.999999999699 0

Table 7: Results for Example 6

Conclusions

We have extended Murakami’s method to obtain non-simple zeros. We have developed a
one-parameter family of fourth order methods for various values of the multiplicity. The
methods listed are not the only solution to the system of equations and we only listed a
representative scheme. The numerical experiments demonstrate the rapid convergence of
our method. Because of the complexity of the symbolic manipulation, we had to assign
certain values to some of the parameters and were unable to achieve fifth order.

11



Appendix

Here we list the coefficients Dj
i in the expression for d2 in (25).

D0
1 = −26c3a2m4 + 32m4c3a3 + 26c3a3m3 − 18c3a4m3 − 28m5c3a2 − 2m6c3

−2m6c3a2 + 6m5c3a3 − 2m7c3 + 2c3a5m3 + 12m6c3a− 12c3a4m2 + 4c3a5m2

−6c3a4m4 + 12c3am5 + 2c3a5m
D1

1 = −37m6c2a− 2m5c2a−m7c2a− 4m6c2a2b+ 7m6c2a3 −m6c2a2 −m6c2a4

+72m5c2a2 − 8c2a4m3b+ 26m6bac2 − 38bc2a2m4 − 4c2a4m2b−m7c2a2

+8m5c2a3b+m4c2a5 − 6bc2m6 + 22bc2a3m3 − 7m5c2a4 + 2m4c2a2 + 26bc2am5

+m8c2 − 42bc2a2m5 − c2a5m3 − 7m5c2a3 + 7m7c2 − c2a5m2 + 9m4c2a4

−4m4c2a4b+ 15c2a4m3 + 30bc2a3m4 +m5c2a5 − 56c2a3m4 − 6m7c2b
D2

1 = −10ca3m4b+ 2ca4m2b− 2m6ca2b2 − 5m6ca2 − 8m3bca3 − 2m7c+ 2ca4m3b
+6m7ca2 + 14m7bc− 2m7bca+ 2m5ca3b2 + 8m4bca2 + 16b2cam5 + 14m6ca
−2m8ca + 4m7ca−m7ca2b− 2ca4m3 − 2ca4m4b+ 2m6ca4 − 6b2m6c− 2m8c
−8m6ca3 + 2b2ca3m3 − 22ca2m5 + 6ca3m5 − 2m7ca3 +m8ca2 + 2m6ca3b
−44m6bca + 16b2am6c + 2m8bc− 2ca4m4 + 4ca3m4b2 + 12ca3m4 − 12b2a2m4c
+37m5ba2c− 2m5ca4b− 14b2a2m5c− 2m5bca− 6m7cb2 + 4m6ba2c+ 2ca4m5

D3
1 = 2b3am5 − 7m6b2a + 2b3am6 + 7m7b2 + 2m7ba− 2m8b+m8b2 − 2b3m6

−2m7b3 − 2bm7 −m7b2a+ 2bam6

D−1
2 = 20c4m4a+ 40c4a3m2 − 40c4a2m3 − 20m4c4a2 + 2c4a5m+ 4c4a5

+10m5c4a− 2m6c4 − 10c4a4m2 − 20c4a4m+ 20c4a3m3 − 4c4m5

D0
2 = −64c3a3m3 − 64c3am5 − 16bc3m5 + 96c3a2m4 − 8m6bc3 + 8c3a4m3

−32m6c3a− 32m4c3a3 + 16c3a4m2 + 64bc3a3m2 + 48m5c3a2 − 16bc3a4m
−96bc3a2m3 + 64bc3am4 + 32m5bc3a− 8bc3a4m2 + 32bc3a3m3 + 16m6c3

−48bc3a2m4

D1
2 = −48bc2a3m3 − 14m6c2a3 − 144bc2am5 − 72m6bac2 + 12b2a3m3c2

−36b2a2m4c2 + 24b2a3m2c2 − 72b2c2a2m3 − 24bc2a3m4 − 20c2a4m3 + 4c2a5m2

+10m4c2a4 + 68c2a3m4 + 96m6c2a− 2m4c2a5 + 12m7c2a + 24m7c2b+ 36b2am5c2

+72bc2a2m5 − 12m6b2c2 + 6m7c2a2 + 144bc2a2m4 − 120m5c2a2 + 72b2c2am4

−8m8c2 − 18m5c2a3 − 24b2m5c2 − 28m7c2 + 10m5c2a4 + 6m6c2a2 + 48bc2m6

−2c2a5m3

D2
2 = −14m7ca2 + 4m8ca + 20m8c+ 6m7ca2b− 80m5ba2c− 96b2cam5

+16b3am5c− 8m6ca3b− 8m5ca3b+ 8m7c3 + 2m5ca4b− 16ca3m5 + 16ca3m4b
−8b3a2m4c− 16b3m5c− 16m8bc+ 24b2a2m5c+ 124m6bca− 4ca4m3b− 8m6b3c
+32b3cam4 + 48b2a2m4c+ 4ca4m4 + 24m7cb2 − 16b3a2m3c+ 8m6ca3 − 2ca4m5

+2m6ba2c+ 44m6ca2 + 2ca4m4b− 48b2am6c+ 20m7bca− 6m8ca2

+4m9c− 56m7bc− 2m6ca4 + 8m7ca3 − 52m7ca + 48b2m6c
D3

2 = −20m7ba + 2b4am5 − 4m8ba + 4m9b− 4m9 − 2m10 − 4b4m5

+20m8b− 16b3am5 + 8m7b2a− 8b3am6 + 4b4am4 + 28m6b2a− 2m6b4 − 8m8b2

+8m7b3 − 28m7b2 + 2m9a + 16b3m6 + 4m8a

12



References

[1] Ostrowski, A. M., Solutions of Equations and System of equations, Academic Press,
New York, 1960.

[2] Traub, J. F., Iterative Methods for the solution of equations, Prentice Hall, New Jersey,
1964.

[3] Neta, B., Numerical Methods for the Solution of Equations, Net-A-Sof, California, 1983.

[4] Sharma, J. R., A composite third order Newton-Steffensen method for solving nonlinear
equations, Appl. Math. Comp., 169, (2005), 242-246.

[5] Sharma, J. R., Goyal, R. K., Fourth-order derivative-free methods for solving non-linear
equations, Inter. J. Computer Math., 83, (2006), 101-106.

[6] Homeier, H. H. H., On Newton-type methods with cubic convergence, J. Comp. Appl.
Math., 176, (2005), 425-432.

[7] Grau, M., Diaz-Barrero, J. L., An improvement to Ostrowski root-finding method, Appl.
Math. Comp., 173, (2006), 450-456.

[8] Neta, B., and Johnson, A. N., High Order Nonlinear Solver for Multiple Roots,
submitted for publication.

[9] Rall, L. B., Convergence of the Newton process to multiple solutions, Numer. Math., 9,
(1966), 23-37.

[10] Schröder, E., Über unendlich viele Algorithmen zur Auflösung der Gleichungen, Math.
Ann., 2, (1870), 317-365.

[11] Hansen, E., Patrick, M., A family of root finding methods, Numer. Math., 27, (1977),
257-269.

[12] Victory, H.D., Neta, B., A higher order method for multiple zeros of nonlinear functions,
Intern. J. Computer Math., 12, (1983), 329-335.

[13] Dong, C., A family of multipoint iterative functions for finding multiple roots of
equations, Intern. J. Computer Math., 21, (1987), 363-367.

[14] Halley, E., A new, exact and easy method of finding the roots of equations generally
and that without any previous reduction, Phil. Trans. Roy. Soc. London, 18, (1694),
136-148.

[15] King, R. F., A family of fourth order methods for nonlinear equations, SIAM J. Numer.
Amal., 10, (1973), 876-879.

[16] Jarratt, P., Some fourth order multipoint methods for solving equations, Math. Comp.,
20, (1966), 434-437.

13



[17] Jarratt, P., Multipoint iterative methods for solving certain equations, Computer J., 8,
(1966), 398-400.

[18] Murakami, T., Some fifth order multipoint iterative formulae for solving equations, J.
of Information Processing, 1, (1978), 138-139.

[19] Redfern, D., The Maple Handbook. Springer-Verlag, New York, 1994.

14


